本站小編為你精心準備了污水處理技術參考范文,愿這些范文能點燃您思維的火花,激發您的寫作靈感。歡迎深入閱讀并收藏。

是改良式序列間歇反應器,是C.Q.Yang等人根據SBR技術特點[1~3],結合傳統活性污泥法技術,研究開發的一種更為理想的污水處理系統。MSBR既不需要初沉池和二沉池,又能在反應器全充滿并在恒定液位下連續進水運行。采用單池多格方式,結合了傳統活性污泥法和SBR技術的優點[4~5]。不但無需間斷流量,還省去了多池工藝所需要的更多的連接管、泵和閥門。通過中試研究及生產性應用,證明MSBR法是一種經濟有效、運行可靠、易于實現計算機控制的污水處理工藝。1MSBR法的基本原理與特點
1.1MSBR的基本組成
反應器由三個主要部分組成:曝氣格和兩個交替序批處理格。主曝氣格在整個運行周期過程中保持連續曝氣,而每半個周期過程中,兩個序批處理格交替分別作為SBR和澄清池。如圖1所示。
圖1MSBR平面布置圖1.2MSBR的操作步驟
在每半個運行周期中,主曝氣格連續曝氣,序批處理格中的一個作為澄清池(相當于普通活性污泥法的二沉池作用),另一個序批處理格則進行以下一系列操作步驟,如圖2所示。
圖2MSBR的運行過程示意圖步驟1:原水與循環液混合,進行缺氧攪拌。在這半個周期的開始,原水進入序批處理格,與被控制回到主曝氣格的回流液混合。在缺氧和豐富的硝化態氮條件下,序批處理格內的兼性反硝化菌利用硝酸鹽和亞硝酸鹽作為電子受體,以原水及內源呼吸所釋放的有機碳作為碳源,進行無氧呼吸代謝。由于初期序批處理格內MLSS濃度高,硝化態氮濃度較高,因此碳源成為反硝化速率的限制條件。隨著原水的加入,有機碳的濃度增加,提高了反硝化的速率。來自曝氣格和序批格原有的硝態氮經反硝化得以去除。另外,該階段運行也是序批處理格中較高濃度的污泥向曝氣格回流的過程,以提高曝氣格中的污泥濃度。
步驟2:部分原水和循環液混合,進行缺氧攪拌。隨著步驟1中原水的不斷進入,序批處理格內有機物和氨氮的濃度逐漸增加。為阻止在序批處理格內有機物和氨氮的過分增加,原水分別流入序批處理格和主曝氣格。使序批處理格內維持一個適當的有機碳水平,以利于反硝化的進行。混合液通過循環,繼續使序批處理格原來積聚的MLSS向主曝氣格內流動。
步驟3:序批格停止進原水,循環液繼續缺氧攪拌。此后中斷進入序批處理格的原水。原水在剩下的操作中,直接進入主曝氣格。這使得主曝氣格降解大量有機碳,并減弱微生物的好氧內源呼吸。序批處理格利用循環液中殘留的有機物作為電子供體,以硝化態氮作電子受體,繼續進行缺氧反硝化。由于有機碳源的減少,缺氧內源呼吸的速率將提高。來自主曝氣格的混合液具有較低的有機物和MLSS濃度。經循環,把序批處理格內的殘余有機物和活性污泥推入主曝氣格,在此進行曝氣反應降解有機物,并維持物質平衡。
摘要:介紹SBR法的新發展??MSBR技術及其在污水處理中的應用,其中包括MSBR的基本原理、操作過程、技術特點與開發研究的重點等。MSBR法具有SBR技術與傳統活性污泥法兩者的優點,可省去初沉池和二沉池,并在全充滿且維持恒定水位下連續進水運行,是一種高效、經濟、靈活、易于實現計算機自動控制的新型污水處理技術。
關鍵詞:SBR活性污泥法序批處理格曝氣格