前言:我們精心挑選了數(shù)篇優(yōu)質(zhì)光纖通信論文文章,供您閱讀參考。期待這些文章能為您帶來啟發(fā),助您在寫作的道路上更上一層樓。

(一)普通光纖
普通單模光纖是最常用的一種光纖。隨著光通信系統(tǒng)的發(fā)展,光中繼距離和單一波長信道容量增大,G.652.A光纖的性能還有可能進(jìn)一步優(yōu)化,表現(xiàn)在1550rim區(qū)的低衰減系數(shù)沒有得到充分的利用和光纖的最低衰減系數(shù)和零色散點(diǎn)不在同一區(qū)域。符合ITUTG.654規(guī)定的截止波長位移單模光纖和符合G.653規(guī)定的色散位移單模光纖實(shí)現(xiàn)了這樣的改進(jìn)。
(二)核心網(wǎng)光纜
我國已在干線(包括國家干線、省內(nèi)干線和區(qū)內(nèi)干線)上全面采用光纜,其中多模光纖已被淘汰,全部采用單模光纖,包括G.652光纖和G.655光纖。G.653光纖雖然在我國曾經(jīng)采用過,但今后不會(huì)再發(fā)展。G.654光纖因其不能很大幅度地增加光纖系統(tǒng)容量,它在我國的陸地光纜中沒有使用過。干線光纜中采用分立的光纖,不采用光纖帶。干線光纜主要用于室外,在這些光纜中,曾經(jīng)使用過的緊套層絞式和骨架式結(jié)構(gòu),目前已停止使用。
(三)接入網(wǎng)光纜
接入網(wǎng)中的光纜距離短,分支多,分插頻繁,為了增加網(wǎng)的容量,通常是增加光纖芯數(shù)。特別是在市內(nèi)管道中,由于管道內(nèi)徑有限,在增加光纖芯數(shù)的同時(shí)增加光纜的光纖集裝密度、減小光纜直徑和重量,是很重要的。接入網(wǎng)使用G.652普通單模光纖和G.652.C低水峰單模光纖。低水峰單模光纖適合于密集波分復(fù)用,目前在我國已有少量的使用。
(四)室內(nèi)光纜
室內(nèi)光纜往往需要同時(shí)用于話音、數(shù)據(jù)和視頻信號的傳輸。并目還可能用于遙測與傳感器。國際電工委員會(huì)(IEC)在光纜分類中所指的室內(nèi)光纜,筆者認(rèn)為至少應(yīng)包括局內(nèi)光纜和綜合布線用光纜兩大部分。局用光纜布放在中心局或其他電信機(jī)房內(nèi),布放緊密有序和位置相對固定。綜合布線光纜布放在用戶端的室內(nèi),主要由用戶使用,因此對其易損性應(yīng)比局用光纜有更嚴(yán)格的考慮。
(五)電力線路中的通信光纜
光纖是介電質(zhì),光纜也可作成全介質(zhì),完全無金屬。這樣的全介質(zhì)光纜將是電力系統(tǒng)最理想的通信線路。用于電力線桿路敷設(shè)的全介質(zhì)光纜有兩種結(jié)構(gòu):即全介質(zhì)自承式(ADSS)結(jié)構(gòu)和用于架空地線上的纏繞式結(jié)構(gòu)。ADSS光纜因其可以單獨(dú)布放,適應(yīng)范圍廣,在當(dāng)前我國電力輸電系統(tǒng)改造中得到了廣泛的應(yīng)用。ADSS光纜在國內(nèi)的近期需求量較大,是目前的一種熱門產(chǎn)品。
二、光纖通信技術(shù)的發(fā)展趨勢
對光纖通信而言,超高速度、超大容量和超長距離傳輸一直是人們追求的目標(biāo),而全光網(wǎng)絡(luò)也是人們不懈追求的夢想。
(一)超大容量、超長距離傳輸技術(shù)波分復(fù)用技術(shù)極大地提高了光纖傳輸系統(tǒng)的傳輸容量,在未來跨海光傳輸系統(tǒng)中有廣闊的應(yīng)用前景。近年來波分復(fù)用系統(tǒng)發(fā)展迅猛,目前1.6Tbit/的WDM系統(tǒng)已經(jīng)大量商用,同時(shí)全光傳輸距離也在大幅擴(kuò)展。提高傳輸容量的另一種途徑是采用光時(shí)分復(fù)用(OTDM)技術(shù),與WDM通過增加單根光纖中傳輸?shù)男诺罃?shù)來提高其傳輸容量不同,OTDM技術(shù)是通過提高單信道速率來提高傳輸容量,其實(shí)現(xiàn)的單信道最高速率達(dá)640Gbit/s。
僅靠OTDM和WDM來提高光通信系統(tǒng)的容量畢竟有限,可以把多個(gè)OTDM信號進(jìn)行波分復(fù)用,從而大幅提高傳輸容量。偏振復(fù)用(PDM)技術(shù)可以明顯減弱相鄰信道的相互作用。由于歸零(RZ)編碼信號在超高速通信系統(tǒng)中占空較小,降低了對色散管理分布的要求,且RZ編碼方式對光纖的非線性和偏振模色散(PMD)的適應(yīng)能力較強(qiáng),因此現(xiàn)在的超大容量WDM/OTDM通信系統(tǒng)基本上都采用RZ編碼傳輸方式。WDM/OTDM混合傳輸系統(tǒng)需要解決的關(guān)鍵技術(shù)基本上都包括在OTDM和WDM通信系統(tǒng)的關(guān)鍵技術(shù)中。
(二)光孤子通信。光孤子是一種特殊的ps數(shù)量級的超短光脈沖,由于它在光纖的反常色散區(qū),群速度色散和非線性效應(yīng)相互平衡,因而經(jīng)過光纖長距離傳輸后,波形和速度都保持不變。光孤子通信就是利用光孤子作為載體實(shí)現(xiàn)長距離無畸變的通信,在零誤碼的情況下信息傳遞可達(dá)萬里之遙。
光孤子技術(shù)未來的前景是:在傳輸速度方面采用超長距離的高速通信,時(shí)域和頻域的超短脈沖控制技術(shù)以及超短脈沖的產(chǎn)生和應(yīng)用技術(shù)使現(xiàn)行速率10~20Gbit/s提高到100Gbit/s以上;在增大傳輸距離方面采用重定時(shí)、整形、再生技術(shù)和減少ASE,光學(xué)濾波使傳輸距離提高到100000km以上;在高性能EDFA方面是獲得低噪聲高輸出EDFA。當(dāng)然實(shí)際的光孤子通信仍然存在許多技術(shù)難題,但目前已取得的突破性進(jìn)展使人們相信,光孤子通信在超長距離、高速、大容量的全光通信中,尤其在海底光通信系統(tǒng)中,有著光明的發(fā)展前景。
(三)全光網(wǎng)絡(luò)。未來的高速通信網(wǎng)將是全光網(wǎng)。全光網(wǎng)是光纖通信技術(shù)發(fā)展的最高階段,也是理想階段。傳統(tǒng)的光網(wǎng)絡(luò)實(shí)現(xiàn)了節(jié)點(diǎn)間的全光化,但在網(wǎng)絡(luò)結(jié)點(diǎn)處仍采用電器件,限制了目前通信網(wǎng)干線總?cè)萘康倪M(jìn)一步提高,因此真正的全光網(wǎng)已成為一個(gè)非常重要的課題。
全光網(wǎng)絡(luò)以光節(jié)點(diǎn)代替電節(jié)點(diǎn),節(jié)點(diǎn)之間也是全光化,信息始終以光的形式進(jìn)行傳輸與交換,交換機(jī)對用戶信息的處理不再按比特進(jìn)行,而是根據(jù)其波長來決定路由。
目前,全光網(wǎng)絡(luò)的發(fā)展仍處于初期階段,但它已顯示出了良好的發(fā)展前景。從發(fā)展趨勢上看,形成一個(gè)真正的、以WDM技術(shù)與光交換技術(shù)為主的光網(wǎng)絡(luò)層,建立純粹的全光網(wǎng)絡(luò),消除電光瓶頸已成為未來光通信發(fā)展的必然趨勢,更是未來信息網(wǎng)絡(luò)的核心,也是通信技術(shù)發(fā)展的最高級別,更是理想級別。
三、結(jié)語
光通信技術(shù)作為信息技術(shù)的重要支撐平臺(tái),在未來信息社會(huì)中將起到重要作用。雖然經(jīng)歷了全球光通信的“冬天”但今后光通信市場仍然將呈現(xiàn)上升趨勢。從現(xiàn)代通信的發(fā)展趨勢來看,光纖通信也將成為未來通信發(fā)展的主流。人們期望的真正的全光網(wǎng)絡(luò)的時(shí)代也會(huì)在不遠(yuǎn)的將來到來。
參考文獻(xiàn):
[1]辛化梅、李忠,論光纖通信技術(shù)的現(xiàn)狀及發(fā)展[J].山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,(04)
[2]毛謙,我國光纖通信技術(shù)發(fā)展的現(xiàn)狀和前景[J].電信科學(xué),2006,(8).
[3]王磊、裴麗,光纖通信的發(fā)展現(xiàn)狀和未來[J].中國科技信息,2006,(4):59-60.
光纖通信是一種以光線為傳媒的通信方式,它主要利用光波實(shí)現(xiàn)信息的傳送。光纖通信技術(shù)最基本的系統(tǒng)組成有三大板塊,主要有:光的發(fā)射、接受和光纖傳輸。該通信系統(tǒng)可以單獨(dú)進(jìn)行數(shù)字信號或者模擬信號的傳輸,也可以進(jìn)行類似于多媒體信息和話音圖像多種不同類別的信號的混合傳輸。光纖通信的基本特征如下。1.1寬頻帶,大容量在光纖通信技術(shù)中,光纖可容納的傳輸帶寬高達(dá)50000GHz。光源的調(diào)制方式、調(diào)制特性以及光纖的色散特性確定了光纖通信技術(shù)系統(tǒng)的容許頻帶。比如說,有一些單波長光纖的通信系統(tǒng),通常使用的是密集波的分復(fù)用等復(fù)雜一些的技術(shù),從而避免通信設(shè)備存在瓶頸效應(yīng)等電子問題,促使光纖寬帶發(fā)揮積極的效應(yīng),增加光纖傳輸?shù)男畔⒘俊?.2抗干擾光纖通信有一個(gè)特別好的優(yōu)點(diǎn),就是它擁有極強(qiáng)的抗電磁干擾能力。由于光纖通信的主要制作原料——石英,具有極強(qiáng)的絕緣性、抗腐蝕性,所以光纖通信具有極強(qiáng)的抗干擾能力。光纖通信也不會(huì)受到電離成的變化、太陽黑子的活動(dòng)和雷電等電磁干擾,更不會(huì)在意人為釋放電磁的影響,石英為光纖通信技術(shù)帶來了巨大的優(yōu)勢。光纖的質(zhì)量輕、體積小,既能有效節(jié)省空間又能保證安裝方便。而且,制作光纖的原始材料來源豐富,成本低廉,溫度穩(wěn)定度高、穩(wěn)定性能好,所以使用壽命一般都很長。光纖通信優(yōu)勢明顯,促成了光纖通信技術(shù)在現(xiàn)代生活中的廣泛應(yīng)用,并且這個(gè)應(yīng)用過的范圍還在不斷的拓展。
2光纖通信技術(shù)發(fā)展特點(diǎn)
2.1擴(kuò)大了單一波長傳輸?shù)娜萘?/p>
當(dāng)今社會(huì)僅單一波長傳輸?shù)娜萘烤透哌_(dá)40Gbit/s,并且相關(guān)部門在這個(gè)基礎(chǔ)上已經(jīng)開始研究160Gbit/s的傳輸技術(shù)。在研究40Gbit/s以上的傳輸技術(shù)時(shí),應(yīng)該對光纖的PMD做出具體的要求。2002年,美國優(yōu)先在LTU-TSG15會(huì)議中提出了將新的光纖類別引入40Gbit/s系統(tǒng)的倡議。并且認(rèn)為在PMD傳輸中一些問題有待探討。我們堅(jiān)信在不久的將來,舉世矚目的專門的40Gbit/s的光纖類型將會(huì)出現(xiàn)。
2.2超長距離的傳輸
在傳輸網(wǎng)絡(luò)的骨干中,理想的傳輸形式莫過于無中繼的傳輸。迄今為止,一部分公司正在采用的技術(shù)是色散齊理,它能夠?qū)崿F(xiàn):最短2000千米至最長5000千米的無電中繼類型的傳輸。另一部分公司正在不斷改進(jìn),提升完善光纖指標(biāo),應(yīng)用拉曼光,放大光傳輸距離的延長。
2.3適應(yīng)DWDM運(yùn)用
普遍應(yīng)用的是32×DWDM系統(tǒng),64×和32×10Gbit/s的系統(tǒng)正在研發(fā)中,已經(jīng)取得了不小的進(jìn)展。DWDM技術(shù)得到了廣泛的應(yīng)用,各研究機(jī)構(gòu)必須加強(qiáng)光纖非線性標(biāo)準(zhǔn)的嚴(yán)格控制。最新推出的ITU-T技術(shù)很好地針對光纖制定了測試方法標(biāo)準(zhǔn),完成了非線性屬性的標(biāo)準(zhǔn)。明確非線性的測試指標(biāo),提出有效面積的相應(yīng)指標(biāo),尤其要完善光纖的非線性的特性。
3光纖通信發(fā)展現(xiàn)狀
3.1普通光纖發(fā)展現(xiàn)狀
我們最常見的光纖就是普通光纖。光通信技術(shù)的進(jìn)步,系統(tǒng)逐步發(fā)展,單一波長信息容量和光中繼距離的加大G652光纖的性能產(chǎn)生了進(jìn)一步提升的可能,表現(xiàn)在不同的區(qū)域,一種符合ITUTG654規(guī)定截止波長的單模光纖,還有符合G653規(guī)定的單模光纖,做出了發(fā)展性完善。
3.2核心網(wǎng)發(fā)展現(xiàn)狀
我國的幾大干線已經(jīng)全面地采用了光纜,多模的光纖遭到合理淘汰,全面實(shí)施單模光纖。常用的有G652和G655兩種光纖。G653在我國初步使用后,今后不會(huì)繼續(xù)發(fā)展。G654也因?yàn)椴荒軐?shí)現(xiàn)該種通信方式系統(tǒng)容量的大幅度增加,因此從來沒有使用到我國陸地光纜中。干線光纜主要在室外,多數(shù)使用分立光纖,這些光纜中的舊式結(jié)構(gòu)已經(jīng)停用。
3.3接入網(wǎng)光纜發(fā)展現(xiàn)狀
接入網(wǎng)的光纜具有分支多、距離短、分差頻繁等特點(diǎn),通常通過增多光纖芯數(shù)的方法來增加網(wǎng)容量。由于市內(nèi)管道的管道內(nèi)徑一定,結(jié)合光纖的芯數(shù)增多和集裝密度的增大減輕光纜重量,縮小光纜直徑十分重要。接入網(wǎng)通常采用的是G652單模光纖或者是G652C低水峰的單模光纖。后者在我國只有少量投入使用。
3.4室內(nèi)光纜發(fā)展現(xiàn)狀
室內(nèi)光纜通常需要能夠滿足不同的要求,具備多種功能。比如說數(shù)據(jù)、話音以及視頻信號的傳送,還可能在遙控和傳感器中得到應(yīng)用。IEC的電纜分類中,指出了室內(nèi)光纜。它至少要包括兩大部分,即局內(nèi)光纜與綜合布線。綜合布線的光纜一般布放在室內(nèi)的用戶端,主要用途就是供用戶使用,因此必須要全面考慮到它的易損性。局用光纜主要布放在中心局以及其他各類電信機(jī)房內(nèi),布放的位置相對固定。
3.5通信光纜在電力線路內(nèi)
光纖只是一種介電質(zhì),光纜卻可以是一種全介質(zhì),而且是完全無金屬的。這種全介質(zhì)的光纜將會(huì)成為電力系統(tǒng)中最理想的線路。在電線桿的敷設(shè)中普遍應(yīng)用兩種全介質(zhì)光纜的兩種主要結(jié)構(gòu):一種是用于架空地線的纏繞式的結(jié)構(gòu),另一種是全介質(zhì)自承式的結(jié)構(gòu)。因?yàn)槿橘|(zhì)自承式的結(jié)構(gòu)可以單獨(dú)地布放,適應(yīng)范圍廣,在我國當(dāng)下的電力系統(tǒng)改造過程中得到了廣泛實(shí)施。國內(nèi)已經(jīng)生成許多種類達(dá)到市場要求的ADSS光纜,但是在其產(chǎn)品的結(jié)構(gòu)和性能等方面還需要更進(jìn)一步的完善。
4光纖通信的主要應(yīng)用形式
在光纖通信的各種應(yīng)用形式中,最普遍最常見的就是電子公文。當(dāng)代社會(huì)的信息化逐漸發(fā)達(dá),網(wǎng)絡(luò)用戶需求不斷上漲,無紙化辦公成為一種時(shí)尚。這就出現(xiàn)了電子公文。
4.1電子公文與紙質(zhì)公文的共性和差別
紙質(zhì)辦公是一種傳統(tǒng)的辦公模式,在歷經(jīng)了多年的傳承之后,在為人們傳遞信息的同時(shí)也暴露出了許多的問題,類似于容易流失,耗費(fèi)資源,流轉(zhuǎn)較慢等。電子公文的產(chǎn)生就有了很大的區(qū)別。雖然兩者都是信息流傳的載體,但是電子公文具有顯而易見的優(yōu)越性。現(xiàn)代化信息社會(huì)必須有無紙化,在此基礎(chǔ)上朝著網(wǎng)絡(luò)化、信息化、科學(xué)化、自動(dòng)化、智能化的趨勢快速發(fā)展。
4.2電子公文的必要性
傳統(tǒng)觀念認(rèn)為電子公文要應(yīng)用計(jì)算機(jī)操作,十分不便,更加依賴于直觀的紙質(zhì)公文,但是紙質(zhì)公文存在嚴(yán)重的資源浪費(fèi)、信息遺失和字跡模糊等缺陷,所以,電子公文代替紙質(zhì)公文始終是必然的趨勢。相對于紙質(zhì)公文在日常工作中的收文登記,承辦傳閱過程中對手工以及腿功的依賴,以及在領(lǐng)導(dǎo)外出時(shí),公文傳遞的不便,電子公文只需要一臺(tái)電腦和一根網(wǎng)線就能夠輕松地解決問題,而且保證省時(shí)省力,可復(fù)制,可粘貼,可備份,超值又有效。利用空間小,保存時(shí)間久,受外界因素影響小。
4.3電子公文技術(shù)問題
電子公文要想能夠?qū)崿F(xiàn)無紙化的辦公條件,必須依靠人們的共同努力,制造出一套良好的、完善的、實(shí)用的管理制度,保證電子公文的高效性和安全性,避免公文的非法泄露。電子公文是信息傳播的載體,是傳遞訊息的渠道,隨著現(xiàn)代化辦公水平的提高,電子公文的質(zhì)量也必須精益求精。所以,必須明確電子公文的幾項(xiàng)專業(yè)技術(shù),抓住進(jìn)步的空間。電子公文不能滿足于現(xiàn)有的硬件配置。在軟件設(shè)計(jì)方面存在功能上、安全性、操作中的缺陷。實(shí)際應(yīng)用過程中,計(jì)算機(jī)操作人員的技術(shù)掌握和應(yīng)用能力不到位。軟件的后續(xù)升級不及時(shí),其他軟件系統(tǒng)的兼容性存在問題。
5光纖通信的發(fā)展與展望
就光纖通信的具體應(yīng)用的詳細(xì)分析,讓我們更好地了解了光纖通信技術(shù)。光纖通信技術(shù)已經(jīng)成為現(xiàn)代化信息時(shí)代的必要性存在。現(xiàn)在從關(guān)鍵點(diǎn)回復(fù)到光纖通信的全局考慮,光纖通信的未來發(fā)展趨勢十分可觀。可發(fā)展的趨勢涉及很多領(lǐng)域,下面就讓我們進(jìn)入深入詳細(xì)的探討。
5.1光網(wǎng)絡(luò)智能化
光網(wǎng)絡(luò)智能化的實(shí)現(xiàn)是在光纖通信技術(shù)當(dāng)中十分關(guān)鍵的研發(fā)方向,在光纖通信技術(shù)將近40年的發(fā)展歷程中,傳輸一直占據(jù)著主要地位,成為光通信技術(shù)的干線。伴隨著計(jì)算機(jī)技術(shù)的連續(xù)進(jìn)步和發(fā)展,完美地將通信技術(shù)與計(jì)算機(jī)技術(shù)結(jié)合起來,促使網(wǎng)絡(luò)技術(shù)發(fā)生更高層次的發(fā)展和進(jìn)步。現(xiàn)代光網(wǎng)絡(luò)在實(shí)現(xiàn)傳輸?shù)耐瑫r(shí),結(jié)合了連續(xù)控制技術(shù)、自動(dòng)發(fā)現(xiàn)能力和更加完善實(shí)用的保護(hù)和恢復(fù)功能系統(tǒng),真正實(shí)現(xiàn)了光網(wǎng)絡(luò)的智能化。
5.2全光網(wǎng)絡(luò)
全光網(wǎng)絡(luò)是光纖通信技術(shù)在發(fā)展過程中的最高層次,是光線技術(shù)發(fā)展到頂端的最理想階段,也是未來通信網(wǎng)絡(luò)將要發(fā)展成為的最終目標(biāo),也就是說未來的通信網(wǎng)絡(luò)就是屬于全光的時(shí)代。原始的全光網(wǎng)絡(luò)對于實(shí)現(xiàn)節(jié)點(diǎn)處的全光化雖然是可操作的,但是在各網(wǎng)絡(luò)節(jié)點(diǎn)處采用的仍然是電器件,這就會(huì)阻礙光纖通信容量的穩(wěn)步提升,所以,全光網(wǎng)絡(luò)就是光纖通信網(wǎng)絡(luò)不斷發(fā)展的終極目標(biāo)。
5.3光器件集成化
在光電子器件發(fā)展的過程中,追求的就是光器件集成化的真正實(shí)現(xiàn)。考慮到全光通信網(wǎng)絡(luò)實(shí)現(xiàn)過程中的關(guān)鍵點(diǎn),器件的集成十分重要,器件的集成更是全光網(wǎng)絡(luò)通信技術(shù)的核心技術(shù)。將檢測器、激光器、調(diào)制器和其他類型的集成芯片集成到一個(gè)芯片中才能完成光子集成芯片的制造。這些集成是通過往不同材料的各種薄膜介質(zhì)表層上的連續(xù)沉積來實(shí)現(xiàn)的,主要應(yīng)用的材料有磷化銦和砷化銦鎵等等。這是一種十分復(fù)雜的技術(shù),但是由于傳統(tǒng)互聯(lián)網(wǎng)接入技術(shù)有限,接入帶寬不足,以及現(xiàn)代互聯(lián)網(wǎng)多媒體的發(fā)展需求,單純地通過改良設(shè)備來擴(kuò)大寬帶,提高速度的做法是很不現(xiàn)實(shí)的,我們必須實(shí)現(xiàn)光器件的集成,從而保證光纖通信的發(fā)展核心堅(jiān)固扎實(shí)。
6結(jié)語
通過這一實(shí)驗(yàn)可以觀察當(dāng)偏置電流變化從而改變弛豫頻率時(shí),高速光纖傳輸系統(tǒng)的性能變化情況[8],仿真模型如圖3所示。圖3中,Ith=33.45mA,τsp=1ns,τph=3ps,I0=IB=40mA,Sequencelength128bits,Samplesperbit512。仿真結(jié)果:在直接光強(qiáng)度調(diào)制下弛豫頻率與有源區(qū)內(nèi)的電子壽命和諧振腔內(nèi)的光子壽命的關(guān)系為(3)根據(jù)仿真模型設(shè)定的參數(shù)可以得到弛豫頻率fres≈1.3GHz。圖4給出了系統(tǒng)性能與調(diào)制頻率的關(guān)系。當(dāng)調(diào)制頻率為1.3GHz時(shí)如圖4(a)所示;當(dāng)調(diào)制頻率為5GHz時(shí)如圖4(b)所示。由圖4可看出,當(dāng)調(diào)制頻率高于弛豫頻率后,系統(tǒng)性能嚴(yán)重變壞。
2摻鉺光纖放大器(EDFA)實(shí)驗(yàn)
本研究用于分析EDFA的頻率特性和噪聲性能[9],仿真模型如圖5所示。在仿真模型中摻鉺光纖參數(shù):Length7m,Corera-dius2.2m,Ermetastablelifetime10ms,Erdopingradius2.2m,Eriondensity1e+025m3,Numericalaperture0.24。仿真結(jié)果如圖6所示。圖6中,(a)為CW激光器的頻率與EDFA增益的關(guān)系曲線,(b)為信號輸入功率與EDFA增益曲線,(c)為功率噪聲曲線。光接收機(jī)實(shí)驗(yàn)光接收機(jī)主要的性能指標(biāo)是靈敏度和動(dòng)態(tài)范圍。本研究的目的是了解光接收機(jī)靈敏度與誤碼率的關(guān)系及靈敏度與最小輸入功率的關(guān)系[10],仿真模型如圖7所示。
3WDM系統(tǒng)實(shí)驗(yàn)
波分復(fù)用是光纖通信系統(tǒng)擴(kuò)大傳輸容量,提高傳輸速率的主要途徑之一,仿真模型如圖9所示。圖9中,利用Mach-Zehnder調(diào)制器進(jìn)行外調(diào)制,16路復(fù)用,光發(fā)射器參數(shù):Bitrate40Gb/s。線路由50km單模光纖與10km色散補(bǔ)償光纖構(gòu)成循環(huán)單元,采用摻餌光纖放大器。解復(fù)用器參數(shù):Bandwidth8e+010Hz,Depth100dB,F(xiàn)iltertypeBessel,F(xiàn)ilterorder6。圖10為WDM系統(tǒng)實(shí)驗(yàn)仿真結(jié)果,圖中給出了解復(fù)用器之前光纖線路之后的光譜圖,圖中較低的部分為噪聲部分。
4結(jié)束語